Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Topics in Antiviral Medicine ; 31(2):78, 2023.
Article in English | EMBASE | ID: covidwho-2314438

ABSTRACT

Background: It is unknown whether individuals with neurological post-acute sequelae of COVID-19 (NeuroPASC) display altered levels of neuroimmune activity or neuronal injury. Method(s): Participants with new or worsened neurologic symptoms at least 3 months after laboratory-confirmed COVID-19 were enrolled in The COVID Mind Study at Yale. Never COVID controls (no history of COVID-19;nucleocapsid (N) antibody negative) were pre-pandemic or prospectively enrolled volunteers. CSF and plasma were assessed for neopterin and for IL-1beta, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p40, IL-12p70, IL-13, MCP-1, TNFalpha by bead-based multiplex assay;and for anti-SARS-CoV-2 N antibodies by Luminex-based multiplex assay in technical replicate, normalized against bovine serum albumin conjugated beads. Plasma concentrations of D-dimer, C-reactive protein, neurofilament light chain (NFL), and glial fibrillary acid protein (GFAP) were measured using high-sensitivity immunoassays. Group comparisons used non-parametric tests. Result(s): NeuroPASC participants (n=38) were studied 329 (median) days (range 81-742) after first positive test for acute COVID-19. Cognitive impairment (84%) and fatigue (82%) were the most frequent post-COVID symptoms. NeuroPASC and controls (n=22) were median 49 vs 52 yrs old (p=0.9), 74% vs 32% female (p< 0.001), 76% vs 23% white race (p< 0.001), and 6% vs 57% smokers (p< 0.001). CSF white blood cells/mL, CSF protein, and serum:CSF albumin ratio were normal in both groups. CSF TNFalpha (0.66 vs 0.55 pg/ul) and plasma IL12p40 were higher (103.3 vs 42.7);and MCP-1 (503 vs 697 pg/ul) and IL-6 (1.32 vs 1.84 pg/ul;p < 0.05 for IL-6) were lower in NeuroPASC vs controls (p< 0.05);but none of these differences were significant after adjusting for multiple comparisons. Plasma GFAP was elevated in NeuroPASC vs controls (54.4 vs 42.3 pg/ml;adjusted p< 0.03). There were no differences in the other biomarkers tested. 10/31 and 7/31 NeuroPASC had anti-N antibodies in CSF and plasma, respectively. Conclusion(s): When comparing NeuroPASC to never COVID controls, we found no evidence of neuroinflammation (normal CSF cell count, inflammatory cytokines) or blood-brain barrier dysfunction (normal albumin ratio), and no support for ongoing neuronal damage (normal plasma NFL). Future studies should include better gender and race matched controls and should explore the significance of a persistent CNS humoral immune response to SARS-CoV-2 and elevated plasma GFAP after COVID-19. (Figure Presented).

2.
Topics in Antiviral Medicine ; 31(2):77-78, 2023.
Article in English | EMBASE | ID: covidwho-2314271

ABSTRACT

Background: Neurocognitive symptoms are common in acute as well as convalescent (post-acute sequelae of COVID-19 [PASC]) COVID-19, but mechanisms of CNS pathogenesis are unclear. The aim of this study was to investigate cerebrospinal fluid (CSF) biomarker evidence of CNS infection, immune activation and neuronal injury in convalescent compared with acute infection. Method(s): We included 68 (35% female) patients >=18 years with CSF sampled during acute (46), 3-6 months after (22) SARS-CoV-2 infection or both (17), and 20 (70% female) healthy controls from longitudinal studies. The 22 patients sampled only at 3-6 months were recruited in a PASC protocol. CSF N-Ag was analyzed using an ultrasensitive antigen capture immunoassay platform (S-PLEX SARS-CoV-2 N Kit, Meso Scale Diagnostics, LLC. Rockville, MD). Additional analyses included CSF beta2-microglobulin (beta2M)], IFN-gamma, IL-6, TNF-alpha neurofilament light (NfL), and total and phosphorylated tau. Log-transformed CSF biomarkers were compared using ANOVA (Tukey post-hoc test). Result(s): Patients sampled during acute infection had moderate (27) or severe (19) COVID-19. In patients sampled at 3-6 months, corresponding initial severity was 10 (mild), 14 (moderate), and 15 (severe). At 3-6 months, 31/39 patients reported neurocognitive symptoms;8/17 patients also sampled during acute infection reported full recovery after 3-6 months. CSF biomarker results are shown in Figure 1. SARS-CoV-2 RNA was universally undetectable. N-Ag was detectable only during acute infection (32/35) but was undetectable in all follow up and control samples. Significantly higher CSF concentrations of beta2M (p< 0.0001), IFN-gamma (p=0.02), IL-6 (p< 0.0001) and NfL (p=0.04) were seen in acute compared to post-infection. Compared to controls, beta2M (p< .0001), IL-6 (p< 0.0001) and NfL (p=0.005) were significantly higher in acute infection. No biomarker differences were seen post-infection compared with controls. No differences were seen in CSF GFAp, t-tau or p-tau. Conclusion(s): We found no evidence of residual infection (RNA, N-Ag), inflammation (beta2M, IL-6, IFN-gamma, TNF-alpha), astrocyte activity (GFAp) or neuronal injury (NfL, tau) 3-6 months after initial COVID-19, while significantly higher concentrations of several markers were found during acute infection, suggesting that PASC may be a consequence of earlier injury rather than active CNS damage. CSF beta2M, IL-6, IFN-gamma and NfL were significantly lower after 3-6 months than during acute COVID-19 and not different from healthy controls. (Figure Presented).

3.
Neuroimmunology Reports ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2298063

ABSTRACT

Background: Literature describing triggers of GFAP astrocytopathy (GFAP-A) is limited. We report a case of GFAP-A in a patient with recent messenger ribonucleic acid (mRNA) severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) vaccination and discuss the possible pathogenesis. Case description: A 45-year-old gentleman presented with features of meningoencephalitis 31 days after the first dose and 4 days after the second dose of mRNA SARS-CoV-2 vaccination. He sequentially developed brainstem/cerebellar, autonomic and cord dysfunction. Cerebrospinal fluid was positive for GFAP autoantibody. Clinical improvement occurred after intravenous methylprednisolone and immunoglobulins. Conclusion(s): Although we are uncertain of a causal link of GFAP-A to mRNA vaccine, indirect activation of an underlying dysregulated immune milieu is plausible.Copyright © 2021 The Author(s)

4.
Bulletin of Russian State Medical University ; 2022(6):119-125, 2022.
Article in English | EMBASE | ID: covidwho-2266624

ABSTRACT

It has been proven that mRNA vaccines are highly effective against the COVID-19 outbreak, and low prevalence of side effects has been shown. However, there are still many gaps in our understanding of the biology and biosafety of nucleic acids as components of lipid nanoparticles (LNPs) most often used as a system for inctracellular delivery of mRNA-based vaccines. It is known that LNPs cause severe injection site inflammation, have broad biodistribution profiles, and are found in multiple tissues of the body, including the brain, after administration. The role of new medications with such pharmacokinetics in inflammation developing in inaccessible organs is poorly understood. The study was aimed to assess the effects of various doses of mRNA-LNP expressing the reporter protein (0, 5, 10, and 20 microg of mRNA encoding the firefly luciferase) on the expression of neuroinflammation markers (Tnfalpha, Il1beta, Gfap, Aif1) in the prefrontal cortex and hypothalamus of laboratory animals 4, 8, and 30 h after the intramuscular injection of LNP nanoemulsion. It was shown that mRNA-LNP vaccines in a dose of 10-20 microg of mRNA could enhance Aif1 expression in the hypothalamus 8 h after vaccination, however, no such differences were observed after 30 h. It was found that the Gfap, l11beta, Tnfalpha expression levels in the hypothalamus observed at different times in the experimental groups were different. According to the results, mRNA-LNPs administered by the parenteral route can stimulate temporary activation of microglia in certain time intervals in the dose-dependent and site specific manner.Copyright © 2022 Pirogov Russian National Research Medical University. All rights reserved.

5.
BMC Neurol ; 23(1): 57, 2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2256347

ABSTRACT

BACKGROUND: Small vessel childhood primary angiitis of the central nervous system (SV-cPACNS) is a rare disease characterized by inflammation within small vessels such as arterioles or capillaries. CASE PRESENTATION: We report a case of SV-cPACNS in an 8-year-old boy confirmed by brain biopsy. This patient was also incidentally found to have anti-glial fibrillary acidic protein (GFAP) antibodies in the cerebrospinal fluid (CSF) but had no evidence of antibody-mediated disease on brain biopsy. A literature review highlighted the rarity of SV-cPACNS and found no prior reports of CSF GFAP-associated SV-cPACNS in the pediatric age group. CONCLUSION: We present the first case of biopsy proven SV-cPACNS vasculitis associated with an incidental finding of CSF GFAP antibodies. The GFAP antibodies are likely a clinically insignificant bystander in this case and possibly in other diseases with CNS inflammation. Further research is needed to determine the clinical significance of newer CSF autoantibodies such as anti-GFAP before they are used for medical decision-making in pediatrics.


Subject(s)
Vasculitis, Central Nervous System , Male , Humans , Child , Vasculitis, Central Nervous System/diagnosis , Autoantibodies , Inflammation/pathology
6.
Investigative Ophthalmology and Visual Science ; 63(7):1727-F0187, 2022.
Article in English | EMBASE | ID: covidwho-2057699

ABSTRACT

Purpose : Background: Despite being primarily a respiratory disease, COVID-19 can lead to non-respiratory complications, including myocardial infarction and acute ischemic stroke. Moreover, COVID-19 spike protein (SP) was reported in the retina of deceased patients with COVID-19. Retinal microvascular abnormalities as loss of microvasculature and distinct thinning of the microcapillaries were reported in patients who recovered from COVID-19. We are still in the midst of the COVID-19 pandemic, with more deaths and cases every day. Therefore investigating the impact of COVID-19 on the retinal neurovascular environment and the long-term effect of this virus on vision is of great interest. Purpose: To study the contribution of COVID-19 SP to retinal inflammation and vascular death. Methods : Methods: COVID-19 SP, a highly glycosylated protein that allows the virus to penetrate the cell and cause infection, was injected intravitreally in 6-8 weeks global h-ACE2 knock-in mice and wild-type mice. Mice were sacrificed after 14 days, then vascular cell death and inflammation were evaluated by the presence of acellular capillaries and the expression of inflammatory and apoptotic markers. To complement our in-vivo studies, Human Microvascular Endothelial Cells (HMEC) were treated with 100 nM COVID-19 SP for 48 hours. The expression of inflammatory and apoptotic markers was assessed by PCR western blot. Results : Results: Our results showed that HMEC exposed to COVID-19 SP for 48 hours displayed an increase in inflammatory and apoptotic markers expression including TNF-α, IL-1β, IL-6, and cleaved caspase-3 compared to control conditions. Additionally, COVID-19 SP enhanced the oxidative stress in HMEC, evident by the increase in nitro-tyrosine formation, superoxide dismutase, and NADPH oxidase complex 1 (NOX1 and NOX5) expression. The in-vivo findings came in agreement with our in-vitro studies. We found that intravitreal injection of the COVID-19 SP-induced 1) strong activation of the retinal glial cells, assessed by GFAP radial staining, and 2) increased vascular death, assessed by acellular capillaries formation 14 days after the injection. Conclusions : Conclusions: Our findings highlight the possible role of COVID-19 SP in inducing retinal inflammation and vascular death. Further studies are required to reveal the impact of COVID-19 SP on visual acuity and the possibility of causing visual impairment using various animal models.

7.
Brazilian Neurosurgery ; 41(2):E192-E197, 2022.
Article in English | EMBASE | ID: covidwho-1996922

ABSTRACT

Intracranial cystic lesions are common findings in cerebral imaging and might represent a broad spectrum of conditions. These entities can be divided into nonneoplastic lesions, comprising Rathke cleft cyst, arachnoid cyst, and colloid cyst, as well as neoplastic lesions, including benign and malignant components of neoplasms such as pilocytic astrocytoma, hemangioblastoma, and ganglioglioma. Surgical resection and histological evaluation are currently the most effective methods to classify cysts of the central nervous system. The authors report two uncommon cases presenting as cystic lesions of the encephalic parenchyma-a enterogenous cyst and a glioblastoma-and discuss typical histological findings and differential diagnosis.

8.
Front Neurol ; 13: 915712, 2022.
Article in English | MEDLINE | ID: covidwho-1933730

ABSTRACT

Introduction: Coronavirus disease 2019 (COVID-19) is prevalent among young people, and neurological involvement has been reported. We investigated neurological symptoms, cognitive test results, and biomarkers of brain injury, as well as associations between these variables in non-hospitalized adolescents and young adults with COVID-19. Methods: This study reports baseline findings from an ongoing observational cohort study of COVID-19 cases and non-COVID controls aged 12-25 years (Clinical Trials ID: NCT04686734). Symptoms were charted using a standardized questionnaire. Cognitive performance was evaluated by applying tests of working memory, verbal learning, delayed recall, and recognition. The brain injury biomarkers, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp), were assayed in serum samples using ultrasensitive immunoassays. Results: A total of 405 COVID-19 cases and 111 non-COVID cases were prospectively included. Serum Nfl and GFAp concentrations were significantly elevated in COVID-19 cases as compared with non-COVID controls (p = 0.050 and p = 0.014, respectively). The COVID-19 cases reported more fatigue (p < 0.001) and post-exertional malaise (PEM) (p = 0.001) compared to non-COVID-19 controls. Cognitive test performance and clinical neurological examination did not differ across the two groups. Within the COVID-19 group, there were no associations between symptoms, cognitive test results, and NfL or GFAp levels. However, fatigue and PEM were strongly associated with older age and female sex. Conclusions: Non-hospitalized adolescents and young adults with COVID-19 reported more fatigue and PEM and had slightly elevated levels of brain injury markers, but showed normal cognitive performance. No associations were found between symptoms, brain injury markers, and cognitive test results, but fatigue and PEM were strongly related to female sex and older age.

9.
Journal of Neurochemistry ; 161(6):453-457, 2022.
Article in English | Academic Search Complete | ID: covidwho-1901747

ABSTRACT

B Front cover b Using neurons differentiated from human embryonic stem cells, Ateaque and coworkers studied neurotrophin signaling using wild-type neurons (stained here for tubulin, green) as well as neurons lacking the BDNF receptor TrkB. TrkB receptors are more abundant than TrkC and as NT3 can also activate TrkB, the unique contributions of NT3-mediated TrkC signalling have been difficult to appreciate. Barde Most neurons in the mammalian brain express the neurotrophin receptors TrkB and TrkC. [Extracted from the article] Copyright of Journal of Neurochemistry is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

10.
Alzheimers Dement ; 18(5): 899-910, 2022 05.
Article in English | MEDLINE | ID: covidwho-1620097

ABSTRACT

INTRODUCTION: Neurological complications among hospitalized COVID-19 patients may be associated with elevated neurodegenerative biomarkers. METHODS: Among hospitalized COVID-19 patients without a history of dementia (N = 251), we compared serum total tau (t-tau), phosphorylated tau-181 (p-tau181), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCHL1), and amyloid beta (Aß40,42) between patients with or without encephalopathy, in-hospital death versus survival, and discharge home versus other dispositions. COVID-19 patient biomarker levels were also compared to non-COVID cognitively normal, mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia controls (N = 161). RESULTS: Admission t-tau, p-tau181, GFAP, and NfL were significantly elevated in patients with encephalopathy and in those who died in-hospital, while t-tau, GFAP, and NfL were significantly lower in those discharged home. These markers correlated with severity of COVID illness. NfL, GFAP, and UCHL1 were higher in COVID patients than in non-COVID controls with MCI or AD. DISCUSSION: Neurodegenerative biomarkers were elevated to levels observed in AD dementia and associated with encephalopathy and worse outcomes among hospitalized COVID-19 patients.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Amyloid beta-Peptides , Biomarkers , COVID-19/complications , Cognition , Hospital Mortality , Humans , tau Proteins
11.
Acta Ophthalmologica ; 100(S267), 2022.
Article in English | ProQuest Central | ID: covidwho-1605305

ABSTRACT

PurposeThe presence of SARS‐CoV‐2 in the eye and different alterations in the ocular tissues have been described. However, the health state of the retinal cells in these patients is unknown. The aim was to analyze the morphology of the retinal cells and glial activation in human donor deceased by COVID‐19.MethodsRetinas from human donors with COVID‐19 (n = 9) and from a group control (n = 5) were analyzed. Samples were obtained from the General University Hospital Consortium of Valencia. Photoreceptors, Müller cells, astrocytes, microglia and retinal blood vessels and the location of ACE2 protein were studied through immunohistochemistry staining in cross‐sections and wholemount retinas (using calbindin, recoverin, GFAP, CRALBP and Collagen Type IV, Iba‐1 and ACE2). Confocal microscopy and a quantitative analysis of Iba‐1 positive cells were performed.ResultsThe mean age of COVID‐19 and control group was 77 ± 11 and 68 ± 7 years, respectively. Müller cells, retinal pigment epithelium and outer segment of photoreceptors showed ACE2 immunostaining. The staining of ACE2 protein in the outer segment of photoreceptors was weaker in some COVID‐19 patients. Several patients presented a swelling of the axon terminal of cone photoreceptors and disruptions in the structure of Müller cells. The ramified resident microglial cells changed to an ameboid shape and most of these cells migrated to the retinal vessels. Moreover, the microglia activation in the retina of COVID‐19 patients was confirmed by a reduction of the total area occupied by these cells.ConclusionsMorphological alterations in the cone photoreceptors and Müller cells, variations in the staining of ACE2 protein and microglia activation was found in human donor retinas with COVID‐19. Support: FEDER‐PID2019‐106230RB‐I00. FPU16/04114, FPU18/02964. RETICS‐FEDER RD16/0008/0016. Retina Asturias/Cantabria. FARPE‐FUNDALUCE. IDIFEDER/2017/064.

12.
Neuroimmunology Reports ; : 100053, 2021.
Article in English | ScienceDirect | ID: covidwho-1586941

ABSTRACT

Background Literature describing triggers of GFAP astrocytopathy (GFAP-A) is limited. We report a case of GFAP-A in a patient with recent messenger ribonucleic acid (mRNA) severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) vaccination and discuss the possible pathogenesis. Case description A 45-year-old gentleman presented with features of meningoencephalitis 31 days after the first dose and 4 days after the second dose of mRNA SARS-CoV-2 vaccination. He sequentially developed brainstem/cerebellar, autonomic and cord dysfunction. Cerebrospinal fluid was positive for GFAP autoantibody. Clinical improvement occurred after intravenous methylprednisolone and immunoglobulins. Conclusion Although we are uncertain of a causal link of GFAP-A to mRNA vaccine, indirect activation of an underlying dysregulated immune milieu is plausible.

13.
J Clin Med ; 10(9)2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1238901

ABSTRACT

With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer's disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid ß peptides (Aß1-40, Aß1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology.

14.
J Neurol ; 268(10): 3574-3583, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1141418

ABSTRACT

OBJECTIVE: To test the hypotheses that blood biomarkers for nervous system injury, serum concentrations of neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAp) can serve as biomarkers for disease severity in COVID-19 patients. METHODS: Forty-seven inpatients with confirmed COVID-19 had blood samples drawn on admission for assessing serum biomarkers of CNS injury by Single molecule array (Simoa), NfL and GFAp. Concentrations of NfL and GFAp were analyzed in relation to symptoms, clinical signs, inflammatory biomarkers and clinical outcomes. We used multivariate linear models to test for differences in biomarker concentrations in the subgroups, accounting for confounding effects. RESULTS: In total, 21% (n = 10) of the patients were admitted to an intensive care unit, and the overall mortality rate was 13% (n = 6). Non-survivors had higher serum concentrations of NfL (p < 0.001) upon admission than patients who were discharged alive both in adjusted analyses (p = 2.6 × 10-7) and unadjusted analyses (p = 0.001). The concentrations of NfL in non-survivors increased over repeated measurements; whereas, the concentrations in survivors were stable. The GFAp concentration was also significantly higher in non-survivors than survivors (p = 0.02). CONCLUSION: Increased concentrations of NfL and GFAp in COVID-19 patients on admission may indicate increased mortality risk. Measurement of blood biomarkers for nervous system injury can be useful to detect and monitor CNS injury in COVID-19.


Subject(s)
COVID-19 , Biomarkers , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Neurofilament Proteins , Prognosis , SARS-CoV-2
15.
Ann Biol Clin (Paris) ; 79(1): 7-16, 2021 02 01.
Article in French | MEDLINE | ID: covidwho-1079401

ABSTRACT

Soon after the pandemic, numerous publications described cases of neurological disorders associated with the SARS-CoV-2 infection. The range of neurological symptoms is becoming increasingly more extensive as the pandemic progresses. However, it is not yet well established whether the manifestations are due to direct viral damage to the nervous system or indirect consequences of the infection. This review presents an inventory of the biochemical markers studied in the context of neurological disorders related to SARS-CoV-2. By reflecting various physiopathological mechanisms, these biomarkers allow both a better understanding of the pathophysiology of Covid-19 and a contribution to the diagnosis of neurologic troubles; they could participate in the prognostic evaluation of patients.


Subject(s)
Biomarkers/analysis , COVID-19/complications , Nervous System Diseases/diagnosis , Nervous System Diseases/etiology , SARS-CoV-2/physiology , COVID-19/diagnosis , COVID-19/epidemiology , Disease Progression , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/virology , Pandemics , Predictive Value of Tests , Prognosis
16.
Crit Care Explor ; 2(10): e0238, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-873089

ABSTRACT

OBJECTIVES: To provide an objective characterization of acute neurologic injury in critically ill patients with coronavirus disease 2019. DESIGN: Prospective observational study. Demographics, comorbidities, and daily clinical physiologic and laboratory data were collected. Plasma levels of neurofilament-light chain, total tau, ubiquitin carboxy-terminal hydrolase L1, and glial fibrillary acidic protein were measured. The primary neurologic outcome was delirium defined by the Intensive Care Delirium Screening Checklist (scale 1-8). Associations among plasma biomarkers, respiratory failure, and inflammation were analyzed. SETTING: Multicenter study in ICUs. PATIENTS: Critically ill patients with respiratory failure, with coronavirus disease 2019, or without (ICU control). MEASUREMENTS AND MAIN RESULTS: A total of 27 patients with coronavirus disease 2019 and 19 ICU controls were enrolled. Compared with ICU controls with pneumonia of other etiology, patients with coronavirus disease 2019 had significantly higher glial fibrillary acidic protein (272 pg/mL [150-555 pg/mL] vs 118 pg/mL [78.5-168 pg/mL]; p = 0.0009). In coronavirus disease 2019 patients, glial fibrillary acidic protein (rho = 0.5115, p = 0.0064), ubiquitin carboxy-terminal hydrolase L1 (rho = 0.4056, p = 0.0358), and neurofilament-light chain (rho = 0.6223, p = 0.0005) positively correlated with Intensive Care Delirium Screening Checklist score and were increased in patients with delirium (Intensive Care Delirium Screening Checklist ≥ 4) in the coronavirus disease 2019 group but not in ICU controls. There were no associations between the measures of respiratory function or cytokines with glial fibrillary acidic protein, total tau, ubiquitin carboxy-terminal hydrolase L1, or neurofilament-light chain levels in patients with coronavirus disease 2019. CONCLUSIONS: Plasma glial fibrillary acidic protein is two-fold higher in critically ill patients with coronavirus disease 2019 compared with ICU controls. Higher levels of glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase L1, and neurofilament-light chain associate with delirium in patients with coronavirus disease 2019. Elevated plasma glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase L1, and neurofilament-light chain are independent of respiratory function and peripheral cytokines.

SELECTION OF CITATIONS
SEARCH DETAIL